Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations

نویسندگان

  • M E J Haagh
  • I Siretanu
  • M H G Duits
  • F Mugele
چکیده

The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting forces and to infer the microscopic origin of the resultant contact angle alteration. We focus, in particular, on two competing mechanisms debated in the literature, namely, double-layer expansion and divalent cation bridging. Our experiments involve aqueous droplets with a variable content of chloride salts of Na+, K+, Ca2+, and Mg2+, wetting surfaces of muscovite and amorphous silica, and an environment of ambient decane containing small amounts of fatty acids to represent polar oil components. By diluting the salt content in various manners, we demonstrate that the water contact angle on muscovite, not on silica, decreases by up to 25° as the divalent cation concentration is reduced from typical concentrations in seawater to zero. Decreasing the ionic strength at a constant divalent ion concentration, however, has a negligible effect on the contact angle. We discuss the consequences for the interpretation of core flooding experiments and the identification of a microscopic mechanism of low salinity water flooding, an increasingly popular, inexpensive, and environment-friendly technique for enhanced oil recovery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Laboratory Investigation into Wettability Alteration of Carbonate Rock by Surfactants: The Effect of Salinity, pH, and Surfactant Concentration

Wettability alteration is an important method for increasing oil recovery from oil-wet carbonate reservoirs. Chemical agents like surfactants are known as wettability modifiers in carbonate systems. Oil can be recovered from initially oil-wet carbonate reservoirs by wettability alteration from oil-wet to water-wet condition with adding dilute surfactant and electrolyte solutions. This paper inv...

متن کامل

Ion adsorption-induced wetting transition in oil-water-mineral systems

The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zer...

متن کامل

An Experimental Investigation of Wettability Alteration in Carbonate Reservoir Using γ-Al2O3 Nanoparticles

Wettability alteration is one of the most important methods for oil recovery from sandstone and carbonate reservoirs. The effects of salinity, pH, temperature, and chemicals such as surfactants and fatty acids on the alteration of the wettability were described in previous studies. In recent years, attention has been directed to nanoparticles as a wettability alteration agent. The effect of som...

متن کامل

Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery.

Injection of optimized chemistry water in enhanced oil recovery (EOR) has gained much interest in the past few years. Crude oil-water interfaces can have a viscoelastic character affected by the adsorption of amphiphilic molecules. The brine concentration as well as surfactants may strongly affect the fluid-fluid interfacial viscoelasticity. In this work we investigate interfacial viscoelastici...

متن کامل

Salinity Effect on the Surfactant Critical Micelle Concentration through Surface Tension Measurement

One of the tertiary methods for enhanced oil recovery (EOR) is the injection of chemicals into oil reservoirs, and surface active agents (surfactants) are among the most used chemicals. Surfactants lead to increased oil production by decreasing interfacial tension (IFT) between oil and the injected water and to the wettability alteration of the oil reservoir rock. Since surfactants are predomin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2017